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1 Forward model sensitivities are commonly applied to evaluate the uncertainty in model 
parameter estimates obtained through inverse analysis. In this case, the forward sen- 
sitivity (Jacobian) matrix is applied to compute ai1 approximate representation of the 
covariance matrix of inverse parameter estimates. However, this a,pproach can produce 
biased estimates of the covariance matrix because it does not account accurately for 
correlations between uncertainty of calibration targets and estimates. Typically, these 
correlakions are non-linear and depend on the spatial and temporal structure of inverse 
targets and estimated parameters. A better but much more coinputationally intensive 
method, which we call inverse-sensitivity approach, directly evaluates the sensitivity of 
inverse estimates of model parameters with respect to the calibration targets. Further, 
we can also evaduate the sensitivity of model prediction based on inverse model param- 
eter estimates with respect to the calibration targets. The proposed methodology can 
be applied to problems such as estimation of predictive uncertainty, optimization of data 
collection strategies, and design of monitoring networks. Its implementation can be per- 
formed efficiently through parallelization. Results based on a simple groundwater flow 
iiiverse problem are presented to illustrate the basis for the method. 

1. INTRODUCTION 

Inverse models are widely used in the field of hydrogeology [2, 3, 4, 6, 9, 51. One of 
the most important aspects in the inverse analysis is the evaluation of uncertainty in 
the estimated parameters. The commonly-used evaluation techniques are obtained froin 
the existing vast body of parameter estimakioii literature [I) and are generally applicable 
when the number of calibration targets (observations) are significantly larger than the 
nuinber of model parameters. However, in the field of hydrogeology we frequently deal 
with inverse problems of groundwater flow problems for which the number of calibration 
taxgets is slightly larger but in the same order with the number of model parameters. It 
can be asgued that these problems are also ultimately ill-posed, i.e. there is no unique 
inverse solution, and therefore it is very important to accurately assess the uncertainty 
in the model-predicted estimates. Further, the relakionship between the spatial structure 
(locakions) of calibration targets and the spatial structure (parameterization) estimated 
model prameters can cause correlations between observation and estimation errors that 
might be very important to  consider. In this paper, we analyze analytically simple test 
cases and compare the sensitivities and estimation uncertainties of model parameters 
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using a traditional technique and an alternative method described below. 

2. METHODOLOGY 

Let us define a forwaxd operator .F which is a functional that maps a given set of model 
parameters p onto a set of niodel-predicted observations 6: 

6 = F(p)  (1) 

Tlie corresponding inverse problem can be defined formally as solviiig (1) for 6 given a 
set of observations (calibration targets) o 

where F-’ is an inverse operator. There are various methods for solving this inverse 
problem [GI. Tlie covariance ma,trix of estimation errors of model parameters CPF are 
commonly computed using the following approximate expression [ 11 : 

where JIF is a sensitivity (Jacobian) matrix of forward model-predicted observations 6 
with respect to model parameters p (JF = dG/ap), and C, is a covariance matrix of 
observation errors. The expression in (3) is obtained by applying generalization of tlie 
Cra8niQ-R.a,o inequality for tlie iiiultivariate case [l] ,  and, as a result, C,F estiimte is 
defining ‘a lower bound’ for the actual covariance matrix of estimation errors (i.e., the 
actual estimation-error variances should be larger tliaai the CpF estimates). The derivation 
of (3) is also based on first-order error analysis [l]. 

An alternative approach for computing the estimation errors which is theoretically 
more accurate can be derived by considering the inverse model (2) as a “forward” model 
which produces mapping of o onto 6. In this case, we can formally estimate the parameter 
uncertainties approximated up to the first order using tlie definition of a covariance matrix 
PI : 

where 6(0)  is tlie set inverse-model-predicted parameters given a, set of observations (cal- 
ibration targets) 0, 0 is the “expected value” for the observations o (i.e., the actually 
observed values), JI is tlie sensitivity matrix of the inverse model representing the partial 
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derivakives of iiiverse estimates of model parameters fi with respect to calibration tar- 
gets o (JI = afi/ao). In (4), we make ai1 assumption that the inverse-model-predicted 
estima#tes given 0, fi(0), represent the “expected value” of e(.) (ix. ,  G(0) = E [fi(o)]). 

Note the difference iii the way JF and JI are computed: forward-sensitivity matrix JF 
represents how the changes in model parameters impact observatioiis predicted by the 
forward model; inverse-sensitivity matrix JI represents how the changes in calibration 
targets impact model parameters predicted by the inverse model. In the partial derivatives 
in JI cannot be computed analytically, the numerical computation of JI will require 
solving of multiple iiiverse problems with different calibration targets. 

We will define the two methods to compute the covariaiice matrix of estimation errors 
outliiied in (3) and (4) as forward- and inverse-sensitivity approaches, respectively. The 
expressions obtained by both approaches (3 and 4) are approximate siiice they are based 
on first-order analyses. However, there are important differences. In (3),  the first-order 
approximation is applied to represent the dependency of model-predicted observatioiis 
to model paratmeters (JF). In (4), the first-order approximation is applied to represent 
the dependeiicy of inverse-model-predicted parameters to calibration targets (JI) . How 
asppropiate tliese approxiniatioiis for both approaches are depends on the mathematical 
properties of the respective forward and inverse problems (1 and 2). However, siiice we 
are iiiterested in the propagartion of observation errors into parameter-estimation errors, 
the iiiverse-seiisitivity aqproach is ma,thematically more suitable for this purpose. Even if 
both first-order a,pproximations are appropriate (liiieax models) or produce similar impacts 
on the covariaiice matrix estimates, C,I can be expected to superior to CPp because the 
C p ~  values are theoretically lower than the actual error variances, as discussed above. 

The differences between the two covariaiice matrix of estimation errors (3 and 4) will 
be further analyzed below for a simple groundwater flow system. We will also discuss 
the differences between the forward- and inverse-model sensitivity matrices and their 
implicak ions. 

3. SIMPLE 1D EXAMPLE 

Let us consider a simple one-dimensional groundwater flow system (Fig. 1). There are 
two zones with permeabilities kl and k2 [LIT].  The constant velocity of grouiidwater 
flow passing through the system is 45 [LIT] ,  and the heads (pressures) are observed at 
four locations along the flow direction, h f ,  hl, h 2  and h3 [L];  the observations are evenly 
distributed with separation distance 1 [L].  To solve the forward problem (l), we can use 
values of k l ,  k2, h f  and 45 and Darcy’s law to compute estimates for hl, h2 and h3: 

A h  h 

Qfl 
121. = hf + - 

kl 

h 

Alternatively, we can solve the inverse problem (2) and estimate and based on 
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Figure 1. Schematic representation of the analyzed simple one-dimensional groundwater 
flow system. 

our knowledge about q f ,  h f ,  hl,  h2 and h3: 

The values for q f  and hJ are assuiiied to be perfectly known, but hl, h2 and h3 are 
considered uncertain with variances of observation errors equal to  ai1, ai2 and ai3, re- 
spectively; further, the observation a rors  are considered uiicorrelajted causiiig the matrix 
C, to lia,ve a diagonal form. Based on the forward model equations (6) we compute the 
sensitivity iiiatrix, Jp, representing the partial deriva,tives of model-predicted observations 
( h l ,  h2 and &) with respect to model parameters (k l  and k2) as follows: 
h h  

Tlie covariance matrix of estimation errors is then defined using (3): 

Alternatively, for the inverse sensitivity h approach, h we compute the sensitivity matrix, 
JI, of model paraineters estimates ( k l  and k2) with respect to calibration targets (hl, 112 
and h3) based on (6): 
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and compute an expression for the covariance matrix of estimation errors using (4): 

The forward-model sensitivity matrix suggests that all the model-predicted observations 
(h1, h2 and G) depend on tlie model parameter kl (7; matrix column 1). However, based 
on the iiiverse-model sensitivity matrix we conclude that only the observation hl impacts 
the inverse estimate G. The model-predicted observation h'; does not depend on k2 (7; 
matrix element [1,2]), whereas the inverse estimate of depends on the calibration target 
hl (9; matrix element [2,1]). These comparisons demonstrate that if we want to estimate 
tlie importance of calibration targets on parameter estimates the analysis should be based 
on inverse-model sensitivity matrix, not on forward-model sensitivity matrix. 

These differences between the sensitivity matrices cause significant differences in the 
correlation matrices of estimation errors. The variance of estimation errors associated 
with k l  based on forward-model sensitivities (8; matrix element [1,1]) depends on the 
errors of all the observations even though observations h2 and h3 halve no impact on the 
kl estimate (6). The variance of estimation errors associated with G based on inverse- 
model sensitivities (10; matrix element [1,1]) depends only on the observation error of hl 
(&), as expected. The covariance (off-diagonal) terms in both matrices allso demonstrate 
tlie same discrepancy: the covariance of estimation errors between the two parameters 
should depend only on the observation error a& (10) and not on all the observation errors 
(8). Finally, the variance of estimation errors associated with k2 have different expressions 
in tlie ma,trices (8 and 10; makrix elements [2,2]) but both of them are functions of all three 
observation errors, as expected. Based on our mathematical intuition, these comparisons 
demonstrate that tlie inverse-sensitivity approach is superior to the forward-sensitivity 
approach to estimate the estimation errors of predicted parameters. 

It is important to note that the estimation uncertainty of G based on the inverse- 
sensitivity approach does not depend on the number of observations to the left of hl (Fig. 
l),  nor on their respective observation errors; however, this is not the case for the forward- 
sensitivity approach. In addition, the estimation uncertainty in the inverse-sensitivity 
approach A depends on the way we compute the model parameters. In the expression for 
k2, should we average the gradients between the three observations differently than in (G), 
for example 

A h  

h 

h 

h 2 + h3 - h i  h3 - h 2  

tlie estimation uncertainty would be different as well. This demonstrates that the 
inverse-sensitivity a,pproach allows us to take into account how the mathematical formu- 
lation of the inverse problem impacts the propagation of uncertainties from tlie observation 
space onto parameter space. Differences among alternative mathematical formulations of 
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the inverse problem represent one type of conceptual model uncertainty which might be 
iinportaiit to consider in our error analysis. Apparently, this conceptual model uncertainty 
cannot be the assessed by the forward-sensitivity approach. 

live should also remark that if the iiuinber of observations is equal to the number 
of observations and if tlie spatial distribution of observations and parameters is such 
thak each parameter is directly associated with single observation, both approaches pro- 
duce mathematically equivalent expressioiis for the covariance matrix of estimation errors 
(C,F C p ~ ) .  For our simple case in Fig 1, these requireiiients will be valid if the perme- 
ability zones k,  are encompassing the spaces between consecutive observation locations h, 
(where i = 1, . . . , N and N is the number of observations/parameters). For example, if 
observation h 3  is ignored or if one extra model parameter k3 for perinea,bility of the zone 
defined between locations of h3 and h2 is added. 

To further demonstrake the differences between the two approaches, we evaluate tlie 
estimation errors for a series of examples. For these tests, we set 1 = 1 nx, qf = 1 m/d, 
h, = 0 na, hl = 1 na, h2 = 2 na, h 3  = 3 m. The estimates of model parameters based 
on (6) axe kl = k2 = 1 m/d. The selected values allow us to analyze only the impact of 
observation errors on parameter uncertainty; more detailed diiiieiisionless error analysis 
‘will be subject of future publications. In Table 1, we present the calculated variances 
of parameter estimakion errors for different values of the variances of observation errors. 
Overall, the forwasd-sensitivity estimates are lower than the inverse-sensitivity estimates. 
The highest discrepancy (on order of 50%) is for Case 5. For the rest of the cases, both 
approaches produce equal or close values for the k2 estiniakion uncertainty ( af2); however, 
the variance of kl estimation error (02,) is systematically underpredicted by the forward- 
sensitivity approach, as expected based on our analysis above. The numerical results 
also demonstrate the dependence of “forward” of, estimate on h z  and h 3  observation 
errors (Table 1; e.g. Cases 1-5): which is inaccurake as discussed above. Note that the 
(‘inverse” estimate of ufl does not depend on oEl (Table 1; e.g. Cases 1 and 2, Cases 
3 and 4). This can be traced not only to the way & is computed in equation (G) ,  but 
also to the way we have selected values of ~alibra~tion targets. As a result of these two 
postulations, the middle term of matrix element [2,2] in (10) containing vi l  is canceled 
because h 3  - h2 = h2 - 121. 

h h  

h 

4. DISCUSSION AND CONCLUSIONS 

The assessment of estimation uncertainty using the inverse-sensitivity approach is gen- 
erally superior to the commonly-applied forward-sensitivity approach. However, the pro- 
posed methodology requires the evaluation of the inverse-model sensitivity matrix, which 
can be very coinputationally intensive task. For the simple case presented in this paqer, 
the evaluakion can be done analytically. For much more complicated numerical models, 
the derivation can only be performed iiumerically (e.g. using a finite-difference approach) 
and it might require substantial computational effort. Nonetheless, the matrix evalua- 
tion can lie performed efficiently through parallelization; we have been successful in tlie 
numerical derivation of inverse-model sensitivity matrix elements for relatively large and 
complex inverse models [8]. Another possible approach to decrease the computational 
burden is to  use approximate (simplified) representations of the forward model in the 
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Estimation errors 
(forward) 0 

Table 1 
Estiniakion errors of model parameters using forward- and inverse-sensitivity approaches 

Estimation errors 
(inverse) 

Observation errors 
nunib Case er I 

I I ail [17x2] a12  TI^^] aia [m2] 
0.1 0.1 0.1 
0.1 1. 0.1 
0.1 0.1 1. 
0.1 1. 1. 
1. 0.1 0.1 
1. 1. 1. 

a;, [m2/d2] a;2[n22/d2] 
0.083 0.05 
0.098 0.05 
0.093 0.14 
0.098 0.235 
0.333 0.14 
0.833 0.5 

a;, [m2/d2] &[m2/d2] 
0.1 0.05 
0.1 0.05 
0.1 0.275 
0.1 0.275 
1. 0.275 
1. 0.5 

inverse process [cf. 71. 
Speciad care should be taken when applying tlie forward-model sensitivity analysis of 

estimakion errors for inverse models, especially when (a) the number of calibration targets 
and the number of model parameters are in the same order, or (b) the spatial structures 
of calibra,tioii tasgets and model parameters proinpt dependency between observation and 
estimahion errors. 

The differences between the forward- and inverse-model sensitivity matrices derived for 
the simple test case demonstrate that the forward sensitivity analysis for evaluation of the 
importa,nce of calibration targets and/or quality of inverse estimates might not always be 
accura,te. For example, high forward-model sensitivity of model-predicted observations 
to the inodel parameters does not necessarily imply high importance of the respective 
taxgets in the calibration process. Also, model parameters that cause substantial changes 
in tlie model-predicted observations might not be estimated by the inverse model with 
high accuracy. 

In contrast, inverse-sensitivity analyses address these potential deficiencies, and there- 
fore ma,y be useful for problems such as estimation of predictive uncertainty, optimization 
of da,ta, collection strategies, and design of monitoring networks. 
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